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The topological substructural molecular design (TOPS-MODE) approach is formulated as a tight-binding
quantum-chemical method. The approach is based on certain postulates that permit to express any molecular
property as a function of the spectral moments of certain types of molecular and environment-dependent
energies. We use several empirical potentials to account for these intrinsic and external molecular energies.
We prove that any molecular property expressed in terms of a quantitative structure—property and
structure—activity relationships (QSPR/QSAR) model developed by using the TOPS-MODE method can be
expressed as a bond additivity function. In addition, such a property can also be expressed as a substructural
cluster expansion function. The conditions for such bond contributions being transferable are also analyzed
here. Several new statistical-mechanical electronic functions are introduced as well as a bond—bond thermal
Green’s function or a propagator accounting for the electronic hopping between pairs of bonds. All these
new concepts are applied to the development and application of a new QSAR model for describing the toxicity
of polyhalogenated-dibenzo-1,4-dioxins. The QSAR model obtained displays a significant robustness and
predictability. It permits an easy structural interpretation of the structure—activity relationship in terms of
bond additivity functions, which display some resemblances with other theoretical parameters obtained from

first principle quantum-chemical methods.

Introduction

The study of quantitative structure—property and structure—
activity relationships (QSPR/QSAR) has a well-deserved reputa-
tion in modern chemistry and biochemistry.!:> The strategy of
QSPR/QSAR modeling is to condense in a mathematical
expression the relationship between the structure of molecules
and their properties. Physical chemistry plays a central role in
this strategy by providing appropriate ways of characterizing
the molecular structure and giving a physical support to the
QSPR/QSAR models. An exciting new area of research in this
field is to find ways of adjusting QSPR/QSAR to the math-
ematical structure of the physical chemistry methods used, such
as the quantum similarity principles of QSPR and QSAR.>-
This paper will focus on this kind of research by providing the
quantum-chemical formulation of a topological substructural
approach to QSPR/QSAR.

The topological substructural molecular descriptors/design
(TOPS-MODE) approach is a theoretical method that relates
quantitatively the properties of molecules to their hydrophobic-
ity, polar surface area, polarizability, molar refractivity, van der
Waals radii, and electronic charges.® The QSPR/QSAR models
obtained are expressible in terms of bond additivity permitting
a clear interpretation of the property/activity in structural terms.
This approach has been applied to several QSPR studies for
different physicochemical properties of organic molecules’® as
well as for ADMET (administration, distribution, metabolism,
excretion and toxicity) parameters of drugs and drug-like
compounds.””'! The QSAR applications of TOPS-MODE
include a large variety of biological activities, such as sedative/
hypnotic, anticonvulsant, anticancer, antiinflamatory, herbicidal,
antibacterial, central nervous system activity, antifungal, and
anti-HIV, among others.!>14
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Here, we reformulate the TOPS-MODE approach as a tight-
binding quantum chemical approach. In such reformulation, we
use several intrinsic molecular potentials accounting for the
electrostatic, polarizability, and steric molecular properties as
well as external potentials describing the interactions of a
molecule with its environment. Several important features of
this approach, such as bond additivity and transferability as well
as the cluster expansion of properties, are formalized in the light
of the tight-binding quantum chemical approach. The new
formulation of TOPS-MODE permits to define several statisti-
cal-mechanical parameters which are directly connected to the
topology of the molecules. Finally, we illustrate the applications
of this approach in QSPR/QSAR by studying the toxicity of a
series of polyhalogenated-dibenzo-1,4-dioxins.

Theoretical Formulation

The basic principle for developing quantitative structure—
property or structure—activity relationships is that we can
express this property/activity in terms of linear free energy
relationships (LFERs).!> In general, the property/activity is
expressed in terms of functions describing the hydrophobic,
steric, and electronic characteristics of the molecules.!®> Here,
we reformulate this principle by stating it in terms of the
molecular and environment-dependent energies.

Postulate 1. Any molecular property A can be expressed as
a function of interaction energies E(?),

A= fEinge) T Eoxema) = ) a B+ (1)
13
where f(Einginsic) and f(Eexeema) are functions of the intrinsic
molecular energy and an external energy depending on the
molecular environment, respectively, o is the fitting error, and
E(t) are the different types of energies involved in the f{Einginsic)
and f{Ecxternar) functions.
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Foundations of TOPS-MODE

The following step in the current approach consists in
connecting the different types of energies and the density of
states. It is known that any type of energy E(f) can be expressed
as!6

E()= [ edT[e(] de(r) 2)

where I'[e(7)] is a density function and &(¢) are the discrete values
of the energy levels for energy of type ¢. Then, we assume the
existence of the following approximation for the density of
states.

Postulate 2. There is always an approximate solution '[(7)]
to the true solution T'[&(#)] through the relationship!”

Tle)] = [ 8l& (@), eOITTe' (0] de' (1) 3)

where O[¢'(r), ()] is the resolution function, the averaging
kernel.

Now, we define the spectral moments of the density function,
which are given by!8:1?

wIED]= [ e(t)Tle(] de(r) @

where the spectral density function is defined as usual as

Tlen)] = dle() = (0] )
J=1

with d(x) being the Dirac delta function. The values of &(f) are
the eigenvalues of the Hamiltonian operator H(#) for a molecule,
which will be defined later on. The kth spectral moment of H(z)
can be defined as'$19

WIE@]=Tr(H'(n} = ) AHOIC= [0 (©)
i J

Then we can express the function f‘[s(t)] as a linear
combination of the moments w[E(1)],"”

Cle®] =) cle®[EM)] (7
Now using the expressions 2 and 7, we can consider that the
energy can be expressed as a linear combination of its spectral
moments,

E®= [ eFe()] de(r) =
SO e cle@ED] de) =y cle@ulE@] (8)

7

We can now use the first postulate in order to express any
property as a function of the spectral moments of the different
energies,

A=Y aED=Y ay cleMWIED]+a=

t 1

Z z b(OulE®] +a (9)

where b;() is an empirical coefficient multiplying the ith spectral
moment of the energy of type ¢. The assumption that any
property/activity can be, in principle, expressed in terms of the
spectral moments of certain density functions is the basis of
the approach known as TOPS-MODE.® The expression (9) states
that any molecular property can be expressed as a function of
the spectral moments of certain types of molecular and en-
vironment-dependent energies.
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Quantum-Chemical Formulation. Here, we start by con-
sidering a united-atom approach to molecular representation.
We follow an approach introduced by Franklin,?° in which each
carbon atom and its associated hydrogens are treated as a united
atom. If we apply this united-atom approach to methane we
can see that it is isoelectronic to neon, with electronic config-
uration 1s?, 2s%, 2p,*2p,*2p,?. Similarly, ethane is isoelectronic
to F,, propane to FOF, isobutane to NF3, neopentane to CFy,
etc.? Then, the united-atom approach is equivalent to the use
of the so-called “hydrogen-depleted graphs”.

At this point, we assume that the wave functions are built up
from “pseudobond” orbitals of the system. A typical bond orbital
is an orbital centered at the bonds of the system.?! The use of
such orbitals was the basis for the creation of the linear
combination of bond orbitals to give molecular orbitals (LCBO-
MO) method.22 However, here we consider orbitals which are
centered at two united-atoms,?’ e.g., centered at the line marking
the following two united atoms (CH3)—(CH3), which is equiva-
lent to be centered at the isoelectronic F—F bond. In this method,
the molecular orbitals are created as linear combinations of the
pseudobond orbitals.?°

In order to obtain the discrete values of the energies &(f) we
solve the secular equations,

m

> b OHD = pSy] =0, j=1..m  (10)

h=1
where the coefficients ¢;(b,t) arise from the linear combination
of pseudobond orbitals, ¢,, centered at the pseudobond b to
give molecular orbitals,?®

m

W= c/b, D@, 1) (11)
b=1

The summations in (10) and (11) are taken over all m
pseudobonds of the molecule. The terms Hj,(f) in (10) are the
entries of the matrix H(#), and ¢;(r) values correspond to the
values of the energies of type r for the molecular orbitals.
The nontrivial solutions of eq 10 are obtained by solving the
determinant equation

H(?) — e(®S(H)I=0 (12)
We assume that the Coulomb integral H;(¢) of a pseudobond
orbital @;(f) depends only on the type of the pseudobond in
which it resides. The resonance integral H;(¢) between pseudo-
bond orbitals ¢;(¢) and ¢;(¢) is assumed to be zero, unless i and
Jj are adjacent pseudobonds, in which case it is taken to be H(f)
= ¢(t). We consider that the pseudobond orbitals are orthonor-
mal, thus Sj; = J;;. The Coulomb integrals are set equal to H(f)
= p(t) — Vi(t)q(t), where Vi(¢) is a potential function to be
defined later for the specific types of energies. Then if we divide
every entry of the secular determinant by ¢(f), the secular
determinant for a molecule having m bonds is written as

e(H—V,(0) 01 03 e 0
0, e(H)—V,(1) 0,3 coe o

1,m

2.m
03, 035 eN—Vy(t) -+ O3 |=0
6m,1 6m,2 6m,3 ce €(t)_ Vm(t)

(13)

where J;; is equal to one if, and only if, the corresponding bonds
are adjacent and ¢;(t) = {p(r) — E(¢)}/q(t) are the eigenvalues
of the matrix H(r) = B — V(¢) and c;(b, 1) are the entries
corresponding to the bond m of the eigenvector associated with
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this eigenvalue. The matrix B is the bond—bond adjacency
matrix of the hydrogen-depleted graph representing the molec-
ular skeleton. In this context, the total energy is defined as twice
the sum of the energies of the molecular orbitals,

E0=2) &) (14)
=1

Definition of the Potentials. The next step is to extend the
approach developed in the previous section to consider any
organic molecule. Then, we consider a similar united-atom
approach for the different groups having hydrogen atoms, such
as NH, and OH, which are isoelectronic with CH; and F; NH
which is isoelectronic with CH, and O; SH which is isoelec-
tronic with Cl; and so forth. A similar approach was already
introduced by Franklin.?® As a consequence, different molecules
like isobutane and 2-propanol are isoelectronic with NF3. This
situation makes it strictly necessary to use different pseudobond
potentials for distinguishing the different pseudobonds in
isoelectronic molecules.

In order to account for intrinsic and intermolecular interac-
tions of a molecule, we consider the following functions,

SE ingie) =SIEWP)] + fIEWL)] + [IES)] + fIEPS)]
(15a)

f(Eexternal) Zf[E(H)] +f[E(MR)] (ISb)

where P stands for the polarizability, L for the electrostatic, S
for the steric, PS for the polar surface, H for the hydrophobic,
and MR for the molar refractivity. There are several possible
ways of selecting the potentials for the different energy
functions, which range from first principle to empirical methods.
For the molecular energy functions, we select pseudobond
potentials based on atomic polarizability (P), on Gasteiger—Marsili
atomic charges (L), van der Waals radii of atoms (S), and atomic
polar surface areas (PS).% Atomic polarizabilities were obtained
from the work of Miller,2? who calculated them from an additive
function based on atomic hybridization components for each
atom using experimental values of molecular polarizability. The
atomic polar surface areas were obtained using the method of
Ertl,* who calculated topological polar surface areas as the sum
of atomic contributions. The values of the Gasteiger—Marsili
atomic charges? are calculated for every atom in the molecule
using the standard procedure, and the values of van der Waals
radii of atoms were taken from Bondi.?°

In the case of the external molecular functions we use two
empirical functions based on the partition coefficient n-octanol/
water (log P) and on molar refractivity (MR). It is known that
log P can be decomposed into a volume term expressing mainly
hydrophobic and dispersive solute—solvent interactions, and
polar terms expressing electrostatic solute—solvent interac-
tions.?” Here, we use the atomic contributions to the experi-
mental values of log P determined by Wang et al.”® For the
MR-based potential, we use the atomic contributions to the
molar refractivity obtained by Ghose and Crippen.2’ The molar
refractivity is calculated from the experimental values of the
density and the refractivity index of a compound. Then, MR
accounts for the volume occupied by a molecule as influenced
by the rest of the molecules surrounding it. Consequently, both
log P and MR characterize the interactions of a solute molecule
with its environment and can be used for f{Eexernal)-

In all cases, the atomic contributions p; and p; for the bonded
atoms i,j are transformed into a pseudobond contribution p;; as
follows

Estrada

_bi D
PiTk Tk

t J

(16)

where k; is the number of pseudobonds incident with the
atom 1.

Using the different types of potentials mentioned in the
previous paragraphs expression 9 can be rewritten in order to
express the molecular property A in terms of the spectral
moments of the different types of intrinsic and external
molecular energies, which is the basic principle of the TOPS-
MODE approach,®

A= Z b(L)u[E(L)] + z b{P)uE(P)] +
D bASHIES]+ Y bPSUIEPS)]+

> bEUEPS)]+ Y bMR[EMR)]+a (17)

Bond Additivity of Molecular Properties. An important
characteristic of the current approach is that any property which
is expressed in terms of spectral moments of the density function
can be expressed as a linear combination of bond contributions.
This property is known as the bond (or group) additivity3*3! of
properties and it is proved in the following:

Theorem. Let A be any molecular property, which according
to (1) can be expressed as a function of interaction energies.
Then A can be expressed as an additivity function of bond
contributions A(b).

Proof. We start by considering any property which is
expressed in terms of the spectral moments of different types
of molecular energies, here designated as #;

A=Y bmIE + Y bl E)] + ++ +
k k
> bt lEG) +a (18)
k

The spectral moments of any energy type can be expressed in
terms of local moments for the bonds of the molecule

WIED] =Y wlE®),b] (19)
b=1

where the bond moments are expressed in terms of the molecular
orbitals and energies as follows,

m

WIED, b= ") [c/b,01€[(0) (20)
=1

Then, substituting (19) in (18), we obtain the property under

study in terms of the bond moments of different energy types,

A=Y S bwlEM). b1+ Y Y bt wlE®), bl +
k b=1 k. b=1

et Z Z bk(tn)/uk[E(tn)» b] + o (2])
k b=1

Now we can sum all the local moments of different types and
order corresponding to a given bond b multiplied by their
respective coefficients,
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AD) =Y bt Em). D1+ bt Ewy). bl + =+ +
% [

> bl wlEw,). bl (22)
k

We call this term A(b) the contribution of the bond b to the
property A. Consequently, we can express the global property
as a sum of bond contributions, which proves the theorem,

A= Ab) ta (23)
b=1

Bond Transferability. The bond transferability®® is based
on the assumption that a molecular property associated with a
bond b in a molecule has a similar, but not identical, value in
another molecule. Then, if we call A(b) the contribution of the
bond b to the property A in the molecule 1, the contribution of
the bond b to the property A in the molecule 2 should be A,(b)
~ A(b). The question in which we are interested here is in
what extension a bond contribution A(b) obtained by using the
TOPS-MODE approach is transferable.

For the sake of simplicity, we consider here a bond contribu-
tion obtained as a linear combination of the spectral moments
of a bond matrix representing an alkane. The results obtained
for this bond contribution can be easily generalized to a bond
property obtained by a more general expression like (21).

Let V() = 0 in H(r) = B — V(?), so that the bond contribution
to the property is expressed as follows,

Ab) =y byu(b) @4
k

The kth spectral moment ui(b) of the bond b represents the
number of closed walks of length & that start and ends at the
bond b in the molecule. Closed walks, also known as self-
returning walks, have been used in different contexts of
theoretical chemistry.’> The length of a closed walk refers to
the number of steps that a particle needs to give for moving
from one site to another. For instance, a particle starting at bond
i visiting an adjacent bond j and then returning to i completes
a closed walk of length k = 2. This closed walk of length two
can be represented by a fragment formed by two adjacent bonds,
here designated as F,(b). Then, the spectral moment u»(b) is
simply the number of fragments F»(b) in the alkane, or in other
words the number of bonds adjacent to the bond b.

In general, any spectral moment can be expressed as a linear
combination of structural fragments of the molecule. For
instance, the first five spectral moments for a bond b in an alkane
are given below, where the symbol I« <l represents the number
of fragments, and the different fragments Fi(b) are illustrated
in Figure 1, where i represents an arbitrary numbering given to
fragments in the Figure 1,

1t,(b) = IF(b)| (25)
us(b) =2IF5(b)l (26)

(b)) = F,(b)| + 4IFy(b)l + 6IF ,(b)| + 5IFY(b)l + 21F (D)l
27

115(b) = 10IF(b)| + 30IF (b)| + 2IF\(b)| + 4IF2(b)| + 2IF3(b)|
(28)

If we substitute the expressions for the spectral moments in
terms of fragments in the eq 22 we obtain,
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AD)=) gF(b) 29)

This means that the contribution of the bond b to the property
A depends on the environment in which this bond is located.
The dependence of A(b) on the molecular environment increases
with the value of k in expression 24. Then, if the bond
contribution A(b) is expressed in terms of large spectral
moments, i.e., large value of &, then A(b) will be included in
very large fragments. As a consequence, A(b) is not transferable
from one molecule to another.

In summary, bond transferability is very much affected by
the order of the spectral moments included in the model
describing the property under study. Low order spectral mo-
ments favor transferability while higher order moments make
the property less transferable.

Cluster Expansion of Properties. The substructural cluster
expansion® of a property A can be seen as a generalization of
the bond additivity of the property. Instead of expressing the
property A as a function of bond contributions in the cluster
expansion the property is expanded as an additivity function of
fragment contributions. Formally, the cluster expansion is
expressed as,

A=Y HAF, (30)

where F; is a molecular fragment and fi(A) is the corresponding
contribution of such fragment to the property A.

The kth spectral moment of the Hamiltonian matrix represents
a weighted closed walk of length k between the bonds of the
molecule, where the weight associated with the walk is the
product of the H(#),,,; interaction elements,*

u() = z i H@i pH@) 53 22 H(Dy ;B

These weighted closed walks can be represented pictorially.
Then, every weighted closed walk starting (and ending) at a
given bond can be associated with a fragment. Consequently,
every spectral moment can be expressed as a linear combination
of molecular fragments. Thus, by substituting these expressions
of spectral moments in terms of molecular fragments into (17)
we can obtain a cluster expansion for the property A.

Statistical-Mechanical Molecular Parameters. Another
important characteristic of the new formulation of the TOPS-
MODE approach is that we can define several statistical-
mechanical parameters for a molecule based on the different

~ L X

Fa(b) F3(b) F4(b)
s N )\/
Fy(b) Fi(b) Fl(b)

Fib) Fy(b)

Figure 1. Molecular fragments contributing to the first spectral
moments of a Hamiltonian matrix according to the eqs 25-28 where
the bold bond corresponds to the bond designated as b.
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types of energies previously defined. First, we define an
electronic partition function for the different types of energies
previously defined, which for the sake of simplicity in the
notation will be designated simply by 7,

2= e (32)
=1

where § = 1/kT is the inverse temperature (7) and k is the
Boltzmann constant.> Using this partition function, we can
define the entropy of the electronic distribution as

S=—kY p ) Inp =k p[fe(n) +nZ1)] (33)
J=1 J=1

where
e*ﬁfj(l)
Z(1)

is the probability of finding the system in the state having energy
&(t). We can rewrite (33) in the following way

pi(t) = (34)

S =kBY &Op ) +kInZn)y p(n)  (35)
=1 J=1

Then, by multiplying by 7 and reordering the terms, we obtain

—/‘13 InZ() ="y &(0p,(t) — TS(t) (36)
=

which by using the known expression F' = H — TS permits to
identify the enthalpy H and the free energy F of the electronic
distribution,

m

Hn=") &) 37

J=1

F(y= —% InZ(1) (38)
Electron Propagation. Another interesting question that can
be answered under the current theoretical scheme is to know
how an impact propagates from one place to another in a
molecule considering the different potentials studied here. In
this sense, we can consider particle hopping on the molecule in
such a way that we can describe how many particles end up at
the ¢th bond if we put particles at the pth bond of the molecule.
The way of measuring such propagation from one bond to
another is by considering the thermal Green's function or the
propagator, G(p, g; 3, ), which is defined as,3°

G(p, ¢;B, 1) = [ple ™MV1g0 (39)

The thermal Green's function can be expressed in terms of

the wave functions for the molecular orbitals with given energy,
such that

Gp.q:B.0= ) ¢p.efg. e " (40)
j=1
where cj(p, t) is the pth entry of the jth eigenvector of the
Hamiltonian matrix H(#), which has energy &,(7).

Topological Connection. In order to establish a connection
between the statistical-mechanical parameters previously defined
and the topological roots of TOPS-MODE, we will make use
of the spectral moments of the Hamiltonian matrices used in
this method. First, we rewrite the partition function (32) as the
trace of the exponential of the Hamiltonian matrix, which can

Estrada

be immediately interpreted in term of the spectral moments of
the corresponding Hamiltonian,

B, _ © H(' _ kw>
Z(6) = tr[e M) = t%fr (—B)—=
r kzzo z

(41)

Then, we can group together the even- and odd-order spectral
moments of the Hamiltonian to give the following expression,

0
Zm—zwﬁga

We recall that the spectral moment p(f) represents the number
of weighted closed walks of length k that exist in the molecule.
Hence, the first term of the right-hand part of eq 42 represents
the number of weighted closed walks of even length in the
molecule. The second term represents the number of weighted
odd-closed walks. Here, the weighting scheme is carried out in
two different ways. First, every bond in the molecule is weighted
by the corresponding potential of type ¢ according to (31).
Second, the spectral moments are weighted in decreasing order
of their lengths by dividing them by a factorial term. In this
way, the shortest closed walks receive more weight than the
longer ones.

In summary, the expression (42) indicates that the partition
function is simply the difference between the number of
weighted closed walks of even length minus the number of
weighted closed walks of odd length. This expression can be
simply written in terms of hyperbolic functions as follows,

= o2t ﬂ2k+1( )
j{(ﬁ) arn @

Z()=")y cosh[e(n]— ) sinh[e,1)] (43)
=1 =1

The first term of the right-hand part of (43) is known as the
even subgraph centrality and the left-hand part is the odd
subgraph centrality of a graph or network.?” Their sum corre-
sponds to the subgraph centrality or Estrada index of the graph
or network.

In addition, the partition function Z(¢) can be expressed as a
sum of bond contributions

2n=" 71 (44)
i=1

where

am—Z(WMm

Then, we can express Z(i, ?) in terms of the eigenfunctions and
energies of the Hamiltonian matrix H(?),

2i,n=" lefi,nl’e ™ (45)
=1

where ¢;(i, t) is the ith entry of the jth eigenvector of the
Hamiltonian H(7), which has energy ().

Computational Results

Here, we will illustrate the use of the previous theoretical
developments by analyzing the toxicity of polyhalogenated
dibenzo-1,4-dioxins (PHDD). These compounds have attracted
an intense public and scientific scrutiny in the past few years
because of their widespread presence in the environment and a
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large number of toxic effects produced by them.?® Among such
toxic effects it can be mentioned the hepatotoxicity, porphyria,
endocrine effects, immunotoxicity, teratogenicity, and carcino-
genecity, among others.> PHDDs have been the target of several
QSAR studies using a large variety of theoretical approaches.*’

We study here a data set of 25 polychlorinated, polybromi-
nated, and polychlorinated-brominated dibenzo-1,4-dioxins which
were originally reported by So and Karplus,*! where a QSAR
model was reported for the Ah receptor (AhR) binding affinities
(pECsp). This data set was recently used by Zheng et al.*? in a
QSAR study using a radial basis neural network. In this study,
the authors used a large series of quantum chemical descriptors,
such as the final heat of formation, total energy, electronic
energy, core—core repulsion energy, dipole moment, orbital
energies, linear polarizabilities, hyper-polarizability, electrostatic
potential on each atom, and net atomic charges, among others.
The best model obtained was using a radial basis neural network
(RBNN) with a squared cross-validation correlation coefficient
q*> = 0.8818, a predictive residual error sum of squares PRESS
= 5.9215 and a root of the mean square error of the cross-
validation rmse = 0.4867. With these values of the cross-
validation parameters, this QSAR has been claimed as “superior
to any other reported QSAR model based on the same activity
data set”.*? The final model, however, uses nine independent
variables in a highly nonlinear model obtained with an RBNN.

In a previous work, Fraschini et al.** determined that the
molecular polarizability plays an important role in the origins
of PHDDs specific binding to their receptor proteins. Then, for
the sake of simplicity, we calculate only the spectral moments
of the polarizability Hamiltonian for the 25 PHDDs studied.
By using linear regression analysis, we obtained the QSAR
model illustrated below:

PECs,=39.03503u, — 6.27781,(P) + 3.5028.10 *1,(P) +
3.9752.10 u, ,(P)
—8.8386.10 1 3(P) + 59.4319

N=25 #=0931 5=0.427 FG,19=51.1

¢*=0.921 PRESS=5.8226  RMSE=0.4826 (46)

This model explains 4% more of the cross-validation variance
in the experimental toxicity that the model previously reported
by Zheng et al.*> The current model also improves the values
of the cross-validation errors, PRESS and RMSE. The cross-
validation experiment was carried out by the leave-one-out
approach in which one compound is leave out the training set,
a model then created and the toxicity of such compounds is
predicted with this model. The process is repeated for all the
compounds in the data set, which simulates the prediction of
the study property for compounds not in the data set. However,
from a QSAR perspective, the most important advantages of
the current model are that it contains only 5 independent
variables (instead of nine in the Zheng et al.*> model) and that
the model permits a clear physical interpretation of the property
studied. The toxicity values are given in the Table 1.

To start with the physical interpretation of the QSAR model
obtained, we express the model (46) as a linear combination of
bond contributions. As a consequence, we obtain a bond
additivity expression for the toxicity of PHDDs. In Figure 2,
we illustrate six of the compounds studied in the data set. Here,
we have grouped the bond contributions into three molecular
regions for the clarity of the analysis. The region I corresponds
to the phenyl ring at the left of the structure plus the
carbon—halogen bonds attached to it. Region II corresponds to
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TABLE 1: Observed and Predicted Values of the Toxicity
of Polyhalogenated Dibenzo-1,4-dioxins Using the Best
QSAR Model Obtained, Equation 46

name pECs observed pECs predicted

1-Cl 4.000 4.688
2,8-Cl, 5.495 5.849
1,2,4-Cl; 4.886 4.715
1,7,8-Cl; 6.658 6.050
2,3,7-Cl3 7.149 6.790
1,2,3,4-Cly 5.886 5.150
1,2,7,8-Cly 6.796 6.863
1,3,7,8-Cly 6.102 6.134
2,3,7,8-Cly 8.000 7.731
1,2,3,4,7-Cls 5.194 5.570
1,2,3,7,8-Cls 7.102 7.186
1,2,4,7,8-Cls 5.959 6.077
1,2,3,4,7,8-Clg 6.553 6.511
Clg 5.000 5.295
2,3,7,8-Bry 8.824 9.569
2,3-Br,,7,8-Cl, 8.830 8.650
2,8-Br,,3,7-Cl, 9.350 9.122
2-Br,3,7,8-Cls 7.939 8.426
1,3,7,9-Bry 7.032 7.126
1,3,7,8-Bry 8.699 8.347
1,2,4,7,8-Brs 7.770 7.753
1,2,3,7,8-Brs 8.180 7.961
2,3,7-Br; 8.932 8.741
2,7-Br, 7.810 7.912
2-Br 6.530 6.46

the four central carbon—oxygen bonds, and region III is formed
by the phenyl ring to the right together with the halogen attached
to it. The values reported in Figure 2 are the sum of the
contributions of the bonds forming each region.

1 9
3 7
4 © 6
0. \ O, Cl
69.458 | 48.748 69.073
0O / [¢) Cl

Cl

123 4-TCDD 1,3,7,8-TCDD
0. cl Cl 0. cl
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69.047 ] 50.085 | 68.623
0 Cl cl Z (s} Cl
1,2,7,8-TCDD 2,3,7,8-TCDD
cl
0. Cl Br. 0. Br
o] Cl cl o} ol
[e]
Clg-DD 2,8-Br;,3,7-Cl,DD

Figure 2. Contributions of three molecular regions (see main text) to
the toxicity of some polyhalogenated dibenzo-1,4-dioxins. The contri-
butions are calculated as the sum of bond contributions for the bond
corresponding to the specific regions.
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Figure 3. Comparison of the contributions of molecular regions to
the toxicity and the polarizability tensor (in SI units, 10°° C m? V™)
for 1,4,6,9-and 2,3,7,8-tetrachlorodibenzo-p-dioxins along the principal
axes of polarizability, which originate in the centre of the molecules.

As can be seen for the tetra-chloro-DDs (first four structures)
the substitution at positions 2,3 or 7,8 produces the largest
contribution of the regions I and III, respectively. Then, the
largest contribution for these regions is observed for the most
toxic of the four isomers, i.e., 2,3,7,8-tetrachloro-1,4-dibenzo-
dioxin. The second largest contribution for the region of type I
is obtained for the substitution at positions 1,2 and the lowest
contribution is obtained for the 1,3 substitution. This trend
coincides with the toxicity order of these compounds. The
substitution 1,2,3,4 produces the lowest contribution to region
I for the four isomers, coinciding with the fact that this
compound is the least toxic of the four. The contribution of the
region II follows a reverse order. That is, the lowest contribution
for this region is obtained for the 2,3,7,8 isomer and the largest
one for the 1,2,3,4 one. In order to understand these trends we
have made the calculation of bond contribution to the toxicity
of 1,4,6,9-tetrachloro-1,4-dibenzodioxin. The polarizability ten-
sor for this compound was studied by Fraschini et al.*> together
with that of 2,3,7,8-tetrachloro-1,4-dibenzodioxin. In Figure 3,
we illustrate the contributions of the three molecular regions
studied in the current work and the values reported by Fraschini
et al.* of the polarizability at the three principal axes, which
originate in the center of the molecule. As can be seen, the
polarizability along the axis y is significantly larger for the
2,3,7,8 isomer. However, the polarizability is larger along
the axis z for the 1,4,6,9 isomer. Then, the contribution of the
region II to the toxicity might be interpreted as produced mainly
by the polarizability along the axis z, while the contributions
of regions I and III might be produced by the polarizability
along the axis y.

If we return to the Figure 2, we can observe that the
contribution of the region II in the octachloro-DD is almost the
same as for the 1,4,6,9-DD, indicating a clear predominance of
the effects produced by the chlorines at positions 1,4 and 6,9.
In addition, we have included the most toxic compound in the
data set studied, i.e., 2,8-dibromo-3,7-dichloro-DD, which
indeed has the largest contribution of regions I and III of all
the compounds shown in this figure.

In closing, we can say that halogen substitution in DDs has
two different effects, which depend on the positions where the
substitutions take place. The substitutions along the axis y
increase the toxic contribution of regions I and III, while
substitutions along the axis z increases the toxicity of region II.

Estrada

In general, it appears that the toxicity of regions I and III, i.e.,
toxicity along the axis y, is determinant for the global toxicity
of these compounds.

Another route to the expression of the toxicity of PHDD in
terms of molecular parameters is by considering the statistical
mechanic parameters defined previously in this work. We have
obtained a good model that expresses pECsg as a function of
the average polarizability partition function,

PEC,, = 86.423 — 127.279Z(P)
N=25 =802 s=0.656 F(1,23)=93.3

Then using the relationship between the partition function
and the expected value of the energy [E(P)L]

47)

m
—&(P)
Z1 sj(P)e 7
(py=""0
P EP)U
the QSAR model (47) relates directly the toxicity of PHDDs
with the orbital energies and the expected energy based on a
polarizability potential. Now, by making use of (43) we can
express the toxicity in terms of the hyperbolic functions of the
orbital energies,

(48)

127.279 <
2

PEC,, = 86.423 — coshe,(P)] +

J=1

Mz sinh[e,(P)](49)
m

J=1

which immediately suggests negative contributions of the even
closed walks and positive contributions of the odd closed walks
of an electron in the PHDD.

Now, by using (44), we can express Z(P) in terms of bond
contributions, which can be calculated by means of (45). These
numbers, Z,,(P) = Z,(P), represent the weighted number of
closed orbits for an electron starting (and ending) at bond p.
Then, we can plot these values together with the values of G
(», q¢; B = 1, P) (Green’s function) representing the electronic
jumps from bond p to bond ¢ under the polarizability potential.
The plots are built as contour plots by using the bond numbers
as the x and y coordinates and the values of G(p, ¢; 8 = 1, P)
and Z,(P) as the z coordinate. These plots are given in Figure
4 for the four tetrachloro-DDs previously studied, where the
main diagonal entries represent the values of Z,(P) and the
nondiagonal ones represent G(p, ¢; P). The structures of these
compounds as well as their bond numbering are given in the
Figure 5.

As can be seen, the largest electron hopping takes place
among the bonds located in any of the three regions previously
demarked. If we take the average values of G(p, ¢; P) for the
bonds in regions I, 11, and III, we observe that the central region
has a value of 6.36 for all compounds in Figure 3. In the case
of bisubstituted phenyl rings, the largest average value (in
parenthesis) of Green's function is obtained for the 1,2-dichloro
(11.03), followed by the 2,3-dichloro (10.994) and then the 1,3-
dichloro (10.392). This pattern reflects the fact that the electron
hopping is limited when chlorine atoms are at 1,3 position,
which might be due to the lack of the resonance or mesomeric
effect between these two groups at meta position to each other.
The average values of Z,(P) for the three regions previously
defined follow the same trend of the toxicity of these com-
pounds. For instance, the largest average value for bisubstituted
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Figure 4. Plot of the values of the bond contributions to the polarizability partition function (diagonal entries) and the Green’s functions for the
electron hopping from one bond to another (nondiagonal entries) for the different bonds in four tetrachlorodibenzo-1,4-dioxins. The structures and
bond numbering are given in Figure 5. Parts a, b, ¢, and d correspond to structures a, b, ¢ and d in Figure 5, respectively.

Figure 5. Structures and bond numbering of the four tetrachlorod-
ibenzo-1,4-dioxins represented in Figure 4.

phenyl rings is for the 2,3 (25.63), followed by the 1,3 (25.60)
and finally the 1,2 (25.52).

In summary, the model (46) obtained by using the tight-
binding quantum-chemical TOPS-MODE approach is not only
a high-quality QSAR model but also an easily interpretable one
in terms of the structural influence on the property/activity
studied. The quantum-chemical formulation of the TOPS-
MODE permits this interpretation in a wider context. Such a
context combines the more intuitive topological ideas with the
more rigorous quantum principles. In addition, such formulation
increases the armamentarium of theoretical tools provided by
the TOPS-MODE to account for several electronic statistical-
mechanical parameters as well as for understanding the electron
flowing in the molecules.

Conclusions and Future Outlook

The topological substructural molecular design (TOPS-
MODE) approach has been widely proved in QSPR/QSAR
studies. The new formulation of this approach in terms of the
quantum-chemical formalism gives TOPS-MODE a solid theo-

retical basis. Accordingly, the TOPS-MODE postulates affirm
that any molecular property can be expressed as a function of
the spectral moments of certain types of molecular and environ-
ment-dependent energies. The functions accounting for the
intrinsic and external energies used in the current version of
TOPS-MODE cannot be considered as a complete basis for
fulfilling this hypothesis. However, the introduction and testing
of new energy functions is possible at any stage and does not
alter the fundamental theoretical principles introduced in this
work.

As we have proved in this work, TOPS-MODE is a
quantum-chemical approach based on a tight-binding formal-
ism in which a series of bond potentials account for intra-
and intermolecular interactions. The empirical potentials used
in the current version of this method can be easily substituted
for others derived from first-principle approaches. We have
proved that any QSPR/QSAR model obtained by using the
current formalism can be expressed as a bond additivity
function. In addition, we have established the basis for
analyzing the transferability of these bond contributions. In
general, most of such contributions are transferable if the
moments of the Hamiltonian matrices involved in the QSPR/
QSAR models are of relatively low order. The current
approach also permits one to express any QSPR/QSAR model
as a substructural cluster expansion, which can be useful for
identifying molecular regions important for a property/
activity. Finally, the new formalism of tight-binding quantum-
chemical TOPS-MODE has permitted to define a series of
new statistical-mechanical electronic parameters for the
molecules. These new parameters keep their topological roots
permitting a clear structural interpretation and have been
proved as valuable tools in a new QSAR model developed
here. The study of the toxicity of polyhalogenated dibenzo-
1,4-dioxins has illustrated some of the advantages of using
TOPS-MODE in QSPR/QSAR as well as of its new quantum-
chemical formulation.
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There are some future directions that immediately emerge
from the current work. The first is to extend it to account for
the three-dimensional geometry of molecules. This can be done
by considering potentials that explicitly depend on interatomic
distances. Second, we have observed in previous studies that
both TOPS-MODE and density functional theory (DFT) permit
the definition of Hammett-type reactivity constants.'?*** Thus,
we believe that another future direction is to study the
relationships between TOPS-MODE and the reactivity param-
eters defined in the context of DFT. This can be done through
the use of the known relationship between the density of states
and the molecular softness.* Finally, we believe that the study
of other types of empirical potentials as well as the use of
potentials obtained from first principle quantum-chemical
methods might enhance the current performance of TOPS-
MODE.
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